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Notes on ‘particle detectors’ 

P G Grove and A C Ottewill: 
Department of Astrophysics, South Parks Road, Oxford, OX1 3RQ, UK 

Received 5 April 1983 

Abstract. This paper examines the theory of ‘particle detectors’ in quantum field theory 
on curved space-times. The historical background of the subject is discussed and then 
an example is given to show that an observer accelerating uniformly through the Minkowski 
vacuum can carry a detector which remains unexcited. The notion of a family of natural 
detectors for any given observer (based on an appropriate definition of rigidity) is intro- 
duced, and the response of such detectors is investigated. The theory is illustrated by 
consideration of a rotating detector in flat space-time. An extensive discussion is given 
of the radiation effects arising both from the walls of the detector and from the interaction 
with the external field. These effects have, in the past, led to some confusion in the 
interpretation of detector response; we clarify this interpretation here. 

1. Introduction and historical background 

In a generally covariant formulation of quantum field theory one can construct a Fock 
space corresponding to any complete orthonormal set of solutions to the wave equation. 
Thus, for each such set one can define states which correspond in conventional 
quantum field theory to particle states. Given so many definitions of a ‘particle’ it is 
of interest to ask in what way, if any, such states will correspond to anyone’s natural 
concept of a particle. In the face of this question it is most appropriate to fall back 
on operational definitions and ask how a given ‘particle detector’ would respond in 
any given state. One can then try to relate this response to the description of that 
state in terms of the various ‘particle’ definitions. 

The first such analysis of particle detectors in quantum field theory on a fixed 
background space-time was given by Unruh (1976). We note, however, that the 
corresponding problem had been considered earlier in the field of quantum optics 
(Glauber 1963). Unruh considered two simple model detectors, one non-relativistic 
and the other fully relativistic. Both detectors were spatially extended having com- 
ponents which followed trajectories of the Rindler Killing vector field with mean 
acceleration a. Unruh was able to show that these detectors would react on moving 
through Minkowski space-time in its natural vacuum state as if immersed in a thermal 
heat bath at local temperature a/2.rr. 

Most subsequent analyses of particle detection, for example that of DeWitt (1979), 
have dealt with the response of pointlike detectors. However, in quantum field theory 
the concept of particle, as defined through Fock bases, is a global one. Therefore, 
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the connection between the response of particle detectors and particles is somewhat 
obscure. Rather, one suspects that any full analysis of particle detection must require 
a discussion of detectors of finite spatial extent. There may, of course, exist regimes 
in which the finite detector behaves essentially as an idealised pointlike detector, but 
this can only be determined once one knows how a realistic detector responds. 

Support for this view may be obtained from a consideration of the quantum field 
theory associated with conformal Killing vector fields in flat space-time (Brown er a1 
1982). First we consider an observer who is accelerating uniformly through flat 
space-time in the Minkowski vacuum state but who carries with him a finite detector 
different from that considered by Unruh. Specifically, we suppose that the walls of 
the detector follow trajectories of a field of the form of K 4 ,  as defined by 

Kqa = (1 + ( t  + x ) ~  + y 2  + z * ,  -1 + ( t  + x ) ~  - y 2  - z 2 ,  2(t  +x)Y,  2(t  + x ) z )  

in some inertial frame and illustrated in figure 1. Further, let the external field be 

Figure 1. The trajectories of the flat space conformal Killing vector field ‘K4’ in the plane 
y = z  =o.  

conformally invariant and let the detector field be conformally invariant and satisfy 
Dirichlet boundary conditions on the sides of the detector. Finally, let the coupling 
between the detector and the external field be conformally invariant. The response 
of this detector may now most simply be determined by making a conformal transfor- 
mation of the form described in Brown et a1 (1982)  which maps the space-time into 
another Minkowski space. The conformal image of the detector is just an inertial 
detector in the new space-time. Moreover, it was shown in Brown et a1 (1982)  that 
under this conformal transformation the Minkowski vacuum is mapped into itself. 
Thus, the original detector is conformally equivalent to an inertial detector moving 
through the Minkowski vacuum. Hence, for example, if it starts in its ground state 
it must remain there. That is, an observer with constant acceleration can take with 
him a seemingly natural detector which remains unexcited on moving through the 
Minkowski vacuum. 

A similar situation can be encountered, again in flat space, even when every 
worldline of two alternative detectors is inertial. Consider the Milne universe, which 
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is the interior of the future light cone of some point P in Minkowski space. Let this 
space be in its natural vacuum state, the Milne vacuum. For an inertial observer who 
comes out of the ‘initial singularity’ at P there are two equally natural ways in which 
he can construct a detector. Either he can take his detector to be defined by 
neighbouring inertial trajectories that all emerge from P, or by parallel neighbouring 
inertial trajectories. Taking the fields and their couplings to be as in the previous 
example, we can perform a conformal transformation mapping the Milne universe 
into the open Einstein universe (Brown eta1 1982). The first detector, whose conformal 
image is inertial, must remain in its ground state while the second detector may become 
excited. 

In this paper we shall investigate the general problem of the construction of particle 
detectors of finite spatial extent. Unruh (1976) studied two types of spatially extended 
detector. However, both types had undesirable features-the first was non-relativistic 
and the second was unbounded. In 9: 2 we introduce an alternative fully relativistic 
model detector with finite spatial extent. 

We consider measurements made on the state of matter in the universe with such 
a detector from the point of view of some classical point observer moving along a 
trajectory, y .  There are, of course, infinitely many ways in which the single trajectory, 
y, can be extended to a finite detector. However, in 9: 2 we shall argue that not all 
such extensions are equally appropriate to discussions of particle detection. Further, 
we describe the construction of a preferred set of detectors for a general observer on 
an arbitrary space-time. Such detectors will have the property that they appear rigid 
to the given observer, although they will not in general appear so to other observers. 
This is the most natural generalisation of Unruh’s prescription to arbitrary motions 
and we shall refer to such a detector as a particle detector corresponding to y .  

In the case when y coincides with the trajectory of a Killing or conformal Killing 
vector field K i t  is also natural to consider a detector whose components follow 
neighbouring trajectories of K. The response of such detectors will be discussed in 9: 3. 

The thermal response of Unruh’s uniformly accelerating detector is in full accord 
with the description of the Minkowski vacuum as a state on Rindler space in terms 
of Rindler particles-it being a thermal state with local temperature a/27r. However, 
in other calculations performed subsequently, the corresponding result did not appear 
to hold. For example, a uniformly rotating detector moving through the Minkowski 
vacuum will be excited (Letaw 1981) even though it contains no ‘rotating particles’ 
(Denardo and Percacci 1978, Letaw and Pfautsch 1980). These results led Letaw 
and Pfautsch (1981) to conclude that: 

‘The correspondence between vacuum states defined via canonical quantum field 
theory and via a detector is thus broken for more general stationary motions, and we 
must conclude that the two definitions are inequivalent.’ 

In 9: 5 we shall argue that a detector whose components follow trajectories of a 
Killing vector field K does, in fact, respond to the presence of K particles. However, 
some care must be taken since the response will, in general, be complicated by the 
effects of radiation by the detector itself. These radiation effects will depend on the 
precise nature of the construction of the detector and on its coupling to the external 
field. As with any ‘complete’ measurement, when interpreting the result of a series 
of ‘elementary’ measurements one should exclude spurious, though sometimes inter- 
esting, effects due to the presence and nature of the measuring apparatus itself. If 
this is done here then the apparent discrepancy between particle detector measure- 
ments and canonical quantisation is removed. 
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2. General theory 

For the reasons laid out in the introduction, we now wish to discuss the theory of 
particle detectors of finite spatial extent. In this section we will consider the theory 
on a general space-time {M, g} before specialising in 9: 3 to spaces possessing a 
conformal Killing vector field, The size of the detector is arbitrary except that we 
assume, of course, that all points of it follow timelike trajectories. 

We suppose that there is a real scalar field @ on {M,  g}, which we will refer to as 
the external field. We take the detector to be a resonant cavity containing another 
real scalar field I,$ which satisfies Robin boundary conditions on the walls of the cavity. 
Finally, we suppose that there is a weak coupling between the two fields described 
by the interaction Lagrangian Lint = A $ @ .  

Suppose that initially the detector field is in the state lA)D, and the external field 
is in the state IG). Transitions will be induced in the detector by interaction with the 
external field. We shall calculate the probability that the detector undergoes a 
transition to the state which for convenience we shall take to be orthogonal to 
lA)D. The amplitude for such a transition in the detector together with a corresponding 
change in the state of the external field to the state IF), say, is given by perturbation 
theory to be 

&(E B )  = ih i d4x .i,(,D(Bl$(~)lA)D(Fl&(~)lG)+ O(h ’). (2.1) 

The integration here is taken over the region of the worldtube of the detector in 
which the observation is made. This region can have finite temporal extent if the 
coupling is only switched on for some specified period. To avoid spurious excitations 
this switching should be performed adiabatically. 

We stress that our interest above is to observe excitations in the detector due to 
the interaction of the detector field with the external field; we do this by working in 
the interaction picture. In certain cases (DeWitt 1975) one can define asymptotic 
linjD and lout)D vacuum states in the detector, and the in-vacuum may contain 
out-particles in which case one says that particle production has occurred. Even if 
there is no coupling between the detector and the external field the description of the 
state of the detector may change in this way but, of course, the state itself will not 
alter. Comparison with this case will enable one to distinguish between the effects of 
actual changes in state brought about by the interaction and mere changes of descrip- 
tion of a fixed state. Clearly it is the former which is relevant to any discussion of 
the detection of particles of the external field. 

is then given to 
lowest order in A by 

The total probability that the detector ends up in the state 

x D ( B  I$ (x’)IA)D(G I& @ ( ~ ’ ) I G )  ( 2 . 2 )  
where the sum is over a complete set of states for the free @ field. 

(G I&(x)~(x’) /G) is the two-point Wightman function for the external field in the 
state IG). Thus, for example, if {M, g }  is some flat space-time and IG) is the Minkowski 
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vacuum state, IM), then we can use the known analytic form for the Minkowski- 
Wightman function, given in inertial coordinates (T,  X) by 

(2.3) 

Equation (2.2) yields the probability of a transition between any two orthogonal 
states in an arbitrarily shaped detector on any space-time. Now we must address the 
problem of the meaning that is to be attached to this result in terms of particle 
detection. This problem is related to the specification of a preferred class of detectors 
for an observer on a particular trajectory y.  To discuss this, we suppose for the 
moment that the detector is not coupled to the external field. 

First, we consider an inertial observer in Minkowski space for which we have a 
well defined notion of particle. If such an observer is placed between two plane 
mirrors which follow arbitrary trajectories in space-time then he will, in general, see 
the mirrors radiating both a flux of particles and a flux of energy (Fulling and Davies 
1976, Ford and Vilenkin 1982). Only in the special case of two inertial mirrors will 
there be neither a flux of particles nor a flux of energy. Now suppose that we consider 
these mirrors as being the walls of a model particle detector. It is then clear that if 
an inertial observer wishes to determine the particle content of some state it is most 
convenient for him to use a detector with walls that are fixed relative to himself. If 
the detector is not rigid in this sense, then when interpreting his readings the observer 
must allow for the effects of the radiation emitted by the walls of the detector itself. 
Clearly, these effects, which depend on details of the structure of the detector, are 
irrelevant to the central issue of particle detection and should be avoided whenever 
possible. 

Similar comments apply to an observer who follows a trajectory of the Killing 
vector field, K, of a static universe, for which there again exists a natural notion of 
particle. This observer will naturally perform measurements with a detector whose 
walls do not vary with time. It is only for such detectors that the walls do not, in his 
opinion, emit particles. 

For an arbitrary space-time and a general observer one does not, a priori, have 
any well defined notion of particle. However, we shall now argue there always exists 
a preferred class of detectors for such an observer which incorporates the important 
features of the detectors of the above examples. The most obvious property that we 
would like a member of this preferred class of detectors to possess is that it should 
be rigid in some appropriate sense. The standard definition of rigidity is that given 
by Born (1909). If V denotes the velocity field of a body then that body is rigid if 
its expansion tensor vanishes, that is, if 

(2.4) 
where h u b  = g o b  + v a v b .  Unfortunately, as is well known (Trautman 1965), even in 
flat space-time it is impossible given an arbitrary timelike trajectory to find a rigid 
body such that one of its particles follows the given trajectory. 

However, the above condition is rather more stringent than we require since we 
are only really interested in how the observer on the given trajectory y views his 
detector. The natural coordinates with which to describe the system are, therefore, 
those defined by a proper reference frame associated with y (Misner et a[ 1973): At 
each point of y send out geodesics orthogonal to y and assign coordinates to events 
in a neighbourhood of y by using the proper time 7 at which the geodesic was sent 
out, the proper distance s along the geodesic and the spherical polar angles of its 

( ~ l & ( x ) & ( x ’ ) l ~ )  = {27r2[ - (~-  T’-iE)’+ ( X  - x ’ ) ~ ] } - ’ .  

= h  h V’c*d’=O 
nb - ac bd 
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tangent vector at y as measured in a suitably transported orthonormal tetrad {ea}. 
The transport law for the tetrad is given by 

( VaVa)ea = -0 e,, n a b  = Aa Vb - VaAb -I- T7abcd V' W d ,  

where V is the velocity of the observer, A his acceleration and W the angular velocity 
of the spatial basis vectors {el, e2, e3} relative to Fermi-Walker transported vectors. 
W is arbitrary, but merely describes a rigid rotation of the spatial basis vectors, which 
simply corresponds to a change of coordinates in the three-surfaces T = constant. 

Clearly, in general, these coordinates will only be well defined in a limited neigh- 
bourhood of y since the spacelike geodesics will converge away from y. The surfaces 
7 = constant in this construction represent the surfaces of simultaneity for the observer 
and are therefore the natural surfaces that the observer would use in constructing his 
quantum field theory (Misner et a1 1973). An observer travelling on y will naturally 
say that a body is rigid if there exists a choice of W for which the corresponding 
spatial coordinates of the components of the body frame remain fixed. We will describe 
such a body as y-rigid. In the special case when y is a Killing trajectory, a body 
which follows other trajectories of the Killing vector field will be both Born rigid and 
y-rigid. 

To an observer moving along y,  the walls of a y-rigid detector appear fixed so 
that they should not, in his opinion, be emitting particles (although from any other 
observer's viewpoint they may be). Therefore, this observer on y will naturally discuss 
'particle detection' in terms of such detectors. In this way the observer's concept of 
particle detection (and hence of particle) is determined by the response of this preferred 
class of detectors. The distinguishing feature of such detectors is that when they are 
uncoupled there are no spurious radiation effects; in B 5 we shall see that when the 
detector is coupled to the external field additional spurious radiation effects arise. 

The problem of the quantisation of the field in a y-rigid detector can be addressed 
by regarding the detector as a space-time in its own right. Unfortunately, this means 
that for the case of a general motion the problem is just as hard as that of quantising 
the field in a general space-time. Thus, to make any further progress we must make 
additional simplifying assumptions. We shall do this in S; 3;  however, in passing, we 
note here that as our construction of y-rigid detectors defines a preferred form d.r 
on the detector space-time one might think of adopting the 'generalised Wick rotation' 
scheme of Candelas and Raine (1977). Unfortunately, in general, the physical 
significance of this procedure is obscure and so we shall not discuss it further. 

3. Stationary detectors 

To gain some insight into the rather complicated expressions of S; 2, we now suppose 
that space-time possesses a stationary region, with a timelike Killing vector field K .  
If one wishes to consider the observations of an observer who follows a trajectory 
of K then it is natural to choose a finite detector which is related to K .  We will 
describe such a detector'as stationary. As noted above, such a detector is both Born 
rigid and y- rigid. 

Let t be the time coordinate associated with K ,  in the sense that K"a, =a,. The 
detector will now be taken to satisfy any set of time-independent boundary conditions. 
In such a detector we can choose a complete orthonormal set of modes of the form 
exp(-iet)f,(x) (DeWitt 1975). Let {U, (t, x)} be such a set and perform the quantisation 
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in the standard fashion. We denote the corresponding vacuum state by IO), and the 
annihilation operator corresponding to the mode uU(t, x) = exp(-ist)fu(x) by 2,. 

In stationary regions of space-time, special interest is attached to states which 
respect the stationarity in the sense that they are invariant under the time translation 
operator generated by t. Let us suppose that IG) is such a state; then we have 

(GI&([, x)&(t, x’)lG) = (Gl&(t - t ’ ,  x)&(O, x’)lG). 

Using equation (2.2) we can now calculate the probability for the detector to undergo 
a transition from its vacuum state, IO),, to a ‘one-particle state’ l a ) = a ^ L l ~ ) ~ .  It is 
convenient to introduce new variable%= t - t’ and s‘ = ;(t + t‘). The integrand in (2.2) 
does not depend on S I  (Jg(t, x )  = Jg(x) by stationarity). The s ’  integration is thus 
a trivial integration over all time which arises since (as a consequence of the stationarity) 
there is a constant probability per unit time of a transition. This constant transition 
probability rate, Pa, can readily be identified as 

-- oc 

Pa = A 2  [-ocd~ exp(-iss) I I d3x d3x’dg(x)  Jg(x’)fX(x)f,(x’) 

x (Gl&(s, x)&(O, x’)lG). (3.1) 

It is often convenient to consider, rather than the transition probability rate Pa to 
a particular state /a),, the transition rate, P, de, to a detector state with energy lying 
in the range E to E +de.  This can be obtained immediately from equation (3.1): if 
we let p ( a l e )  denote the density of detector states with energy E and generalised 
mode index a then 

x (Gl&(s, x)&(O, x‘)lG). (3.2) 
Suppose now that the space-time possesses only a conformal Killing vector field 

K, but that the external field is conformally invariant. Following the discussion of 
§ 1, we can consider the response of a detector whose components follow trajectories 
of K. This detector will not be rigid even in the less restrictive trajectory dependent 
sense of § 2. However, it will be a natural detector for observers following trajectories 
of K to use; for example, in a Robertson-Walker universe this will be precisely the 
detector constructed by a set of comoving observers. Such detectors have also been 
studied by Sanchez (198 1) for accelerated motions in two-dimensional Minkowski 
space-time,although no mention is made in this work of the peculiar non-rigidity of 
such detectors or their limited applicability in four dimensions. 

If we choose the detector and coupling to be conformally invariant then, following 
the approach described in 9: 1, we may make a conformal transformation to a related 
stationary space-time. The conformal image of this detector will be a detector 
following trajectories of the Killing vector field. In § 5 we shall argue that such a 
detector will respond to the presence of particles of the natural (Killing vector based) 
quantisation. Here, correspondingly, the original detector will respond to the presence 
of particles of the natural (conformal Killing vector based) quantisation. 

Clearly, as it stands, equation (3.1) is rather complicated and it is appropriate to 
ask whether there is any regime in which it can be approximated. A natural and 
commonly used approximation scheme is the monopole approximation in which the 
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term (GI& - t ' ,  x)&(O, x')lG) is replaced by (Gl&(t - t ' ,  X)&(O, X)lG), where X is the 
spatial coordinate of y. Loosely speaking, the assumption being made is that the 
modes of the external field which can interact with the detector mode a are slowly 
varying over the dimensions of the detector. In other words, we are dealing with a 
long-wavelength or low-energy approximation. 

With this approximation equation (3.1) becomes 

where & ( t )  denotes the value of & on y at time t ,  and 

2 To find PE we need merely replace /ua by 1' = E m  p (a  IE)lam I . Equation (3.3) is 
precisely the transition probability for a point monopole $I ( t )  coupled to the external 
field by the interaction Am ( t ) @ ( t )  (DeWitt 1979) with the identification 

We note that in this approximation the cross-section factor, Ic,12, is independent of 
the external field mode with which the detector interacts. 

The problem of when a monopole of the type studied by DeWitt (1979) represents 
a good approximation to any form of realistic detector on a general space-time is 
less clear. However, the assumption that one can separate out the time dependence 
of the detector modes, as DeWitt does, requires that space-time can be taken to be 
stationary over the duration of the observation. 

4. The rotating detector 

To illustrate the use of the general formulae and ideas of B 3 we now discuss the 
special case of a rotating detector in flat space-time. This example will also prove 
extremely useful for our discussions of the interpretation of detector response in S: 5. 
By a 'rotating detector' we mean a rigid detector corresponding to an observer in 
Minkowski space who revolves about a fixed axis at constant radius a with constant 
angular velocity n, where, of course, na < 1. Such an observer lies on an integral 
curve of the Killing vector field K"a, = + na,, where the cylindrical polar coordinates 
(T,  R, 0 , Z )  define some inertial frame. It follows that 'rotating detectors' are also 
rigid in the Born sense. 

The discussion of a rotating system is simplified by the introduction of rotating 
polar coordinates. Denoting, as above, the cylindrical polar coordinates in some 
inertial frame by (T,  R, 0, Z) ,  the related rotating coordinates are defined by the 
equations 

t = T, r = R ,  8 = 0 - nT, z =z. 
In these coordinates K"a, = a,, the Minkowski line element is 

d s 2 =  - (1- f12r2)d t2+2nr2d8 d t + r 2 d e 2 + d r 2 + d z 2  
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and the scalar wave equation is 

a2 i a  l a 2  [ -($ -0;) + -$ + + 7 3  + $ ] @ = O .  (4.1) 

We note that it is possible to perform a global quantisation on Minkowski space 
using modes adapted to K :  a complete orthonormal set of modes satisfying equation 
(4.1) is given by 

(4.2) 

where M is an integer, Q 2 0,  W = (K2 + Q2)'12 and J ,  is the Bessel function of the 
first kind of order a. The energy, E, of this mode, as measured by the rotating 
observer and defined through the equation ~ K @ K M Q  = -iEQKMo, is given by E = 
W -MR. W is the energy of the mode as measured by an inertial observer; we shall, 
following convention, refer to it as the frequency of the mode It is important 
to note that, although W must be positive, E can take either sign. (This idea is 
familiar from, for example, discussions of superradiance by Kerr black holes.) 

The field can be quantised by imposing the standard canonical commutation 
relations (Denardo and Percacci 1978, Letaw and Pfautsch 1980), and the resulting 
vacuum state is found to be just the Minkowski vacuum. Indeed, the modes (4.2) are 
just standard cylindrical Minkowski modes written in rotating coordinates, so that 
even a rotating observer's natural definition of a particle coincides with that of an 
inertial observer who uses fixed cylindrical polar coordinates. 

We consider a detector whose walls consist of the planes e = fa, z = f h and the 
cylinders r = a and r = 6, as illustrated in figure 2. It is very hard to construct modes 

@ K M o  = (1/27r(2 W)'I2)  exp[-i( W -Mll)t] exp(Wf3) exp(Xz)JIMI(Qr) 

A X I S  of 
rotat ion 

r = b  

Figure 2, The rotating detector is taken to be bounded by the planes 6 = It a, z = i h and 
the cylinders r = a, r = b. 

which vanish on all walls of the detector (Pfautsch 1981). However, since the configur- 
ation is stationary we can choose more general stationary boundary conditions: in 
particular, we impose periodic boundary conditions on the sides of the wedge and 
retain vanishing boundary conditions on the other faces. The detector modes can 
then be written 

Gkmq = N k m q  exp[-i(w - m l l ) t ]  exp(im8) sin(k[z + h ] ) C ,  (qr) (4.3) 

normalisation factor. C,m,(qr) is a cylinder function of order lml (that is, C,,,(qr) = 

where m =7rjla, j E Z ;  k = n n / 2 h ,  n = 0 ,  1 , 2 , .  . . ; w = (q  2 + k  2 ) 1/2 and Nkmq is a 
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cos 6 Jlml(qr) +sin PYlml(qr), for some p )  such that Clml(qa) = Clml(qb) = 0. We denote 
by E the energy of the mode as measured by the rotating observer, E = w - m R. It 
is a remarkable fact, which we prove in the appendix, that the energy, E ,  of each of 
the positive norm modes t,bkmq in the detector is positive. 

To apply the general formula (3.2) for the transition probability rate, P,, we further 
require the density of states p(jkq1s). In the appendix we describe how to obtain an 
approximate form for this density of states: 

P G Grove and A C Ottewill 

p ( jkq  [ E  ) a we(@ )e(aw - T ljl/cy )  cos-'(^) jl/cyoa ). (4.4) 

We note that for given E there are finite maximum and minimum values which j can 
take; we denote them by jmax and jmin respectively. They are determined by the 
inequality 

cy Ea cy ea 
T 1+Ra 

---<.<-- 
T l-na’ -1 - 

This is illustrated in figure 3. 

Figure 3. The allowed values of m and E for the rotating detector. The disallowed area 
is shaded and the dependence on the angular velocity, n, is indicated by arrows from 
n a  = o  to Ra = 1.  

We can now use equation (4.4) together with the modes (4.2) and (4.3) in equation 
(3.2) to obtain an expression for the transition probability rate, P,. The expression 
obtained is extremely long, and rather than present it in this form we choose to 
simplify it first by performing the standard monopole approximation in the r and z 
directions (which are uninteresting compared with the 8 direction). In order that this 
approximation be valid we must assume that the radial and vertical dimensions of the 
detector are small in the sense discussed in 0 3. However, we make no assumptions 
about the angular extent of the detector. The resulting expression for the transition 
probability rate per unit volume is: 

P.aA”y(&- imi. F)cos-’( Eacy - .ni TjRa ) i P j ( E , c y )  (4.5) 
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with 

??,(E, a) = 1 ( M i l - - & )  sin2(Tj + M a )  &” d@ cos @J2d(MSz - & ) U  cos 8) (4.6) 
M ( T j  + M a ) 2  

the sum being from M = [&/a]+ 1 to 00, where [x] denotes the integer part of x .  
In the limit as the angular extent of the detector tends to zero only terms with 

j = 0 survive in the sum (4.5). This behaviour is an artefact of the use of periodic 
boundary conditions. The limiting response for a detector of this type is then given by 

m T / 2  

l j E a A 2 &  ( M S ~ - E ) / ~  d @ c o s B J k ( M R - & ) a c o s @ )  
rs/n1+1 

-1 s-ie fl(s - ie) 
ds exp(-iss) [ - (,T) +4a2 sin’ ( 2y )] (4.7) 

2 2 - 1 / 2  where y = (1 -0 a ) . The second equality follows from (2.3) on expressing the 
Minkowski Wightman function in terms of the modes (4.2). The results of a numerical 
integration of (4.7) are displayed in figure 4 for the case Sza = 0.5. 

E 

Figure 4. The transition probability rate for an infinitesimal rotating det, Pctor with 
na = 0.5. 

Equation (4.7) shows that there is a non-zero probability of a rotating detector 
becoming excited even on moving through its associated vacuum state. Moreover, it 
does so in a non-thermal way despite feeling a constant acceleration. The inter- 
pretation of this result, which led to considerabre confusion in the literature, will be 
discussed in 5 5. 

We note that the integrand in (4.7) possesses a pole infinitesimally displaced from 
the origin. This pole produces a term in PE proportional to @(-E). Such a term is 
present even when the detector moves inertially and ensures that the energy in the 
detector does not increase without limit. 
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Equation (4.5) can also be used to determine the response of a detector of non-zero 
angular extent, The results of a numerical computation of P, for a detector with a = 
and n u  = 0.8 are displayed in figure 5 .  This figure clearly displays how, when (Y is 
finite, states with non-zero angular momentum can be excited in the detector and 
contribute to the total probability. These transitions are suppressed in the monopole 
limit; for example, states with j = 1 only contribute above an energy e = (1 -fla).rr/(acr) 
and this clearly tends to infinity as (Y + 0. We note that states with j = - 1 only 
contribute above the higher energy E = (1 + n a ) r / ( a a ) .  We shall return to this point 
in S: 5 .  

L 

Figure 5. The transition probability rate for a finite rotating detector with a =? and 
Ra = 0.8. The full curve indicates the total transition probability rate while the various 
broken and dotted curves indicate the transition probability rate to a state of particular 
angular quantum number, j .  

5. Interpretation 

In S: 3 we showed that in the monopole approximation the response of a stationary 
detector with simple linear coupling is essentially determined by the Fourier transform 
of the autocorrelation function of the external field-the transform being taken with 
respect to proper time along the worldline of the detector. This result admits an 
interesting interpretation (Sciama eta1 1981): the Fourier transform of the autocorrela- 
tion function is directly related, by the Wiener-Khinchin theorem, to the power 
spectrum of the fluctuations of the field. Thus, the detector can be said to be acting 
as a ‘fluctuometer’. 

In 8 4 we showed that for a rotating detector the connection between fluctuometer 
response and particle detection cannot be direct: the rotating detector became excited 
even though no particles were present. Indeed, the view has often been expressed 
that the detector is just acting as a vacuum fluctuometer and that one should not 
expect any information from it on the particle content of space-time. However, in 
this section we wish to discuss how the response of a simple detector can be interpreted 
to yield information about the particle content of a state. The important distinction 
we wish to make here is between the ‘elementary’ and ‘complete’ levels of measurement 
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(DeWitt 1965). The elementary level, at which our discussions have been based so 
far, deals merely with the simple relationship between the system on which the 
measurement is being performed and the response of the measuring apparatus. On 
the other hand, the complete level is concerned with the interpretation and physical 
conclusions that can be drawn from this response, and as such usually deals with a 
sequence of elementary measurements. In our case, at an elementary level, we have 
shown that a point monopole will act as a fluctuometer. However, more realistic finite 
detectors or even point monopoles with a different coupling will not respond in this 
way. These differences at the elementary level are unimportant and to be expected. 
Rather, it is the conclusions drawn at the complete level, which in our case concern 
the particle content of space-time, that we expect to be of fundamental, model- 
independent significance. 

For simplicity we suppose that there exists a global Killing vector field K on the 
space-time which is timelike somewhere. We wish to determine how the response of 
a stationary detector is related to the particle content of the space-time. We stress 
that in many cases of interest K is not timelike over all of space. For example, the 
Rindler Killing vector field is timelike for 1x1 > It/ but is spacelike for 1x1 < Itl, while the 
rotating Killing vector field is timelike for Or < 1 but spacelike for Or > 1. 

We start by introducing coordinates related to K in the usual way. These coordin- 
ates may possess (unimportant) singularities on the horizons of K, but we assume that 
they are otherwise well defined over the whole of space-time. Such coordinates can 
certainly be chosen for all flat space Killing vector fields (Letaw and Pfautsch 1981). 
It is then possible to introduce a complete orthonormal set of modes for the space-time 
which have the form x, = exp(-iE,t)p,(x). In stationary regions of the space-time E, 
may be identified with the energy of the mode. In general the requirement of positive 
norm is not equivalent to the condition that E, be positive. However, it will be the 
same if space-time is static and the surfaces t = constant are Cauchy surfaces; this is 
the case for the Rindler Killing vector field. 

We can use the above set of modes to construct a Fock space for the quantum 
theory of the external field. It is important to note that in the formalism of canonical 
quantisation one must associate a creation operator with a positive norm solution to 
the wave equation. Decomposing the field operator as Q, = 6,xJ +6:x: we define 
the vacuum state that is naturally associated with K by the equations 

b;/K) = 0 vj, (KIK)  = 1. 

Let us now assume, as in § 3, that the state, IG), of the external field is invariant 
under the action of K. We stress, however, that we are not assuming that (G) is the 
state constructed from the modes X I .  In fact, let us suppose that IG) is the vacuum 
state of a Fock space constructed from the positive norm modes {a,,,}. Decomposing 
the field operator as &=a^,@., +a*',@$, the state IG) is thus defined by the equations 

a*,IG) = 0 vm, (GIG) = 1. 

For example, in Minkowski space we could have IG) = IM) and take Qm to be plane 
wave modes while xi might be Rindler modes or rotating modes. 

Finally, we note that, as hi} and {Q,,,} are both complete sets, there exists a 
Bogoliubov transformation between them. Let this be given by the equation 

Q m  = a m j x j  + @ m i x : .  (5.1) 
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Now, as above, let us consider a transition in which the detector moves from its 
vacuum state to the one-particle state associated with the mode exp(-ier)f, (x), while 
the external field goes from the state IC) to the state IF). In terms of the notation 
of this section the amplitude (2.2) for the detector to undergo such a transition is 

and so, assuming that the time and frequency integrals can be interchanged (a 
procedure which is certainly valid in the Rindler and rotating cases), 

(5.3) 

(5.4) 

d ( F ,  a )  = iA[S(E +E,)(Flaz,a*LIG)A,*, + S ( E  - E , ) ( F I P z , a * ~ / G ) B ~ ]  

= ih[S(e +E,)(Flb*: IG)A,*, + S ( E  -E,)(FIb*,IG)B,*,] 

where 

The total probability of a transition to a detector state can now be written as 

Pa = A * [ S ( E  +E,)S(E +Ek)am,a;kApA;a + 2 S ( &  +E,)S(E -Ek) Re(am,PzkAJuBka) 

+a(& -Ej)S(E -Ek)PmlPZkBjaBLI (5 .6)  

where the repeated index a is not summed over. 
For the Rindler case the first two terms in (5.6) do not contribute since it is 

impossible to satisfy the delta functions (as E, > O  and e > O )  and so the transition 
probability is essentially given by ZmIPmJ12. Indeed this comment will apply to any 
static detector in a static space-time. This clearly supports the interpretation that the 
Rindler detector is responding purely to the Rindler particle content of the Minkowski 
vacuum. On the other hand, for the rotating case Pm, = 0, so only the lamf 1' term in 
(5.6) contributes to the transition probability. To interpret this result we turn to the 
transition amplitude. From (5.4) we can see that the amplitude A(F,  a )  is composed 
of two terms: the first term, S ( E  +E,)(Flb*;lG) corresponds to radiation emitted by 
the detector and describes a transition in which the external field acquires a K particle. 
The second term, S ( F  -E,)(F16; IG), corresponds to the absorption of a particle by 
the detector and describes a transition in which the global field loses a K particle. 
As noted above, for a static detector the first term vanishes. Moreover, when IG) = IK) 
the second term clearly vanishes. In general, both terms are present and together lead 
to the standard quantum mechanical interference term in the probability (5.6). 

Returning to the case of the rotating detector, only the first term in (5.4) will 
contribute: all excitations in the rotating detector are due entirely to the recoil from 
the radiation it emits. This interpretation is supported by the observation that the 
integral in (4.3) is identical to that obtained by Schwinger (1954) when he calculated 
the first-order quantum corrections to the synchrotron radiation emitted by an electron 
moving in a circle under the influence of a constant magnetic field, in the approximation 
that the electron is spinless. For the finite detector of § 4 we noted that transitions 
to states with negative j are suppressed relative to states with positive j .  Thus, on 
average the radiation emitted by the detector will be such as to slow it down. Clearly 
it is necessary to supply energy from some externa! source to keep the detector rotating 
at a constant angular velocity and, indeed, it is this source which must supply the 
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energy which is radiated by the detector. (We note in passing that this argument 
illustrates a general advantage of using a finite detector, namely, that one can consider 
the momentum transfer between the detector and the external field.) 

For the Rindler detector only the second term in (5.4) will contribute. From an 
accelerated observer’s point of view this term can be interpreted simply as correspond- 
ing to the absorption of a particle of energy E from the thermal bath of particles 
present. On the other hand, in terms of Minkowski particles the final state is very 
complicated: the state 6, IM) = p *,,&; IM) contains infinitely many Minkowski particles 
in a highly correlated superposition. Hence from an inertial observer’s point of view 
the detector will emit a complicated flux of particles and not just a single Minkowski 
particle as stated by Unruh (1976). 

The above observations show how, at a complete level, one is able to relate 
fluctuometer response to the particle content of a state, at least in the simple circum- 
stances discussed in this section: after a particle detection the number of particles in 
the external field decreases so that on average the probability of a subsequent detection 
falls. After a radiation recoil excitation the number of particles in the external field 
increases so that on average the probability of a subsequent detection rises. Thus, by 
using several detectors (as one realistically would) and calculating the correlations 
between them, one can determine which excitations are spurious radiation effects and 
which correspond to particle detections. We stress that in considering the response 
of a classical detector one must also, in general, consider the effects of classical 
radiation. The only difference in the quantum case is that there are additional radiation 
effects which are present even when no particles are present. These additional effects 
can be related to the purely quantum phenomenon of radiation by moving mirrors 
(Unruh and Wald 1982). 
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Appendix 

In this appendix we discuss properties of the detector modes $‘km4 used in the rotating 
detector calculations of 9: 4. We recall that 

(‘41) 

where m = TjJCu, j E Z; k = m J 2 h ,  n = 0 , 1 , 2 ,  . . . ; w = ( q 2 +  k2)”* and Nkmq is a nor- 
malisation factor. Cl,l(qr) is a cylinder function of order Im/ such that 

Gtmq = Nkmq exp(-i(w -mf l ) t )  exp(im0) sin(k[r + h])C,,l(qrj 

Clml(qa)=Clm (qb)=O.  (‘42) 

Firstly, we note that the zeros of cylinder functions of order r are interlaced with 
the z e m  of J ,  (krdelyl et a1 1953). Hence, if j,,, der~otes the n th positive zero of J,  
then since qb must be at least the second positive zero of the function Cl,l(x) it follows 
that qb >j lm  Moreover, it is known that j,,] > r (Erdelyi et a1 1953j, and so qb > lml. 
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Thus, if a b  < 1 (the condition that the outer edge of the box should travel at less 
than the speed of light) then q > (m In and so E = (4’ + k2)1’2 - m > 0. 

Secondly, we note that for large n ,  

and for large r, 

j,,, = r + ~ ( r  1’3). 

Hence, it is a good approximation to assume that the positive zeros of a cylinder 
function Cr(x) are uniformly distributed over the region x > r. Determining the density 
of states under this approximation is straightforward. The result is given in equation 
(4.4). 
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